探讨了矩阵方程XA+YB=C存在对称次反对称解的条件及解的表达式.利用矩阵分解,给出了方程有解的充要条件和解的解析表达式.在矩阵方程的解集合中,利用Frobenius-矩阵范数正交不变性获得了给定矩阵的最佳逼近解的表达式,并建立了相应的数值算法.
The conditions for the matrix equation XA + YB = C to have a symmetric and skew anti-symmetric solution and its expression are discussed.Based on the matrix decomposition,the necessary and sufficient conditions for the existence of a solution are given.In the solution set of the above equation,by using orthogonal invariance of the Probenius norm,the expression of optimal approximation solution to a given matrix is derived.Moreover,the corresponding numerical algorithm is presented.