位置:成果数据库 > 期刊 > 期刊详情页
WSN中基于多分辨率和压缩感知的数据融合方案
  • ISSN号:1000-0801
  • 期刊名称:《电信科学》
  • 时间:0
  • 分类:TP274.2[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]保定学院信息技术系,保定071000, [2]浙江大学理学院,杭州310058
  • 相关基金:国家自然科学基金面上项目(No.41374001)
中文摘要:

当前基于压缩感知的传感器网络数据融合方案中,不论数据字段有何特征,均假设网络具有固定而均匀的压缩阈值,从而导致数据通信量过高,能耗浪费较大。提出一种基于多分辨率和压缩感知的数据融合方案。首先,对传感器网络进行配置,以生成多个层次类型不同的簇结构,用于过渡式数据收集,在该结构上,最低层的叶节点只传输原始数据,其他层的数据收集簇进行压缩采样;然后将其测量值向上发送,当母数据收集簇收到测量值时,利用基于反向DCT和DCT模型的CoSaMP算法恢复原始数据;最后,在SIDnet-SWANS平台上部署了该方案,并在不同的二维随机部署传感器网络规模下进行了测试。实验结果表明,随着分层位置的变化,大部分节点的能耗均显著降低,与NCS方案相比,能耗下降50%~77%,与HCS方案相比,能耗下降37%~70%。

英文摘要:

A data aggregation scheme based on multi-resolution with compressed sensing was proposed. Firstly, the network was configured to achieve the muhiple-level and the different types of cluster structure for intermediate data collection, on this structure, the leaf nodes in the lowest level only transmit the raw data. The collecting clusters in other levels perform the compressed sampling and then transmit them to their parent cluster heads. When parent collecting clusters receive random measurements, they use inverse DCT and DCT model based CoSaMP algorithm to recover the original data. The proposed scheme was implemented on a SIDnet-SWANS simulation platform and test different sizes of two-dimensional randomly deployed sensor network. The experiment results show that the substantial energy savings are reported for a large portion of sensors on the different hierarchical positions, ranging from 50% to 77% when compared with NCS, and from 37% to 70% when compared with HCS.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电信科学》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国通信学会 人民邮电出版社
  • 主编:韦乐平
  • 地址:北京市丰台区成寿寺路11号邮电出版大厦8层
  • 邮编:100078
  • 邮箱:dxkx@ptpress.com.cn
  • 电话:010-81055443
  • 国际标准刊号:ISSN:1000-0801
  • 国内统一刊号:ISSN:11-2103/TN
  • 邮发代号:2-397
  • 获奖情况:
  • 获第二届全国优秀科技期刊评比三等奖(1997年),获中国科协优秀科技期刊二等奖(1997年),在第四次邮电科技期刊质量检查评比中荣获优秀科技...,国家新闻出版总署将《电信科学》列为“中国期刊方...,获第三届中国科技优秀科技期刊奖三等奖(2002年),在第五次通信行业科技期刊质量检查评比中荣获优秀...,在第六次通信行业科技期刊质量检查评比中荣获优秀...,2008年再次入选《中文核心期刊要目总览》,2009年入选中国科技论文统计
  • 国内外数据库收录:
  • 美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12435