位置:成果数据库 > 期刊 > 期刊详情页
A RVR-based Method for Bias Field Estimation in Brain Magnetic Resonance Images Segmentation
  • ISSN号:1004-0552
  • 期刊名称:《中国生物医学工程学报:英文版》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China, [2]Department of Mathematics, Zhejiang University, Hangzhou 310027, China
  • 相关基金:Grant sponsor: National Natural Science Foundation of China; grant number: 10971190; grant sponsor: National Natural Science Foundation of China; grant number: 11001239 and 11101365
中文摘要:

This paper presents a relevance vector regression(RVR) based on parametric approach to the bias field estimation in brain magnetic resonance(MR) image segmentation. Segmentation is a very important and challenging task in brain analysis,while the bias field existed in the images can significantly deteriorate the performance.Most of current parametric bias field correction techniques use a pre-set linear combination of low degree basis functions, the coefficients and the basis function types of which completely determine the field. The proposed RVR method can automatically determine the best combination for the bias field, resulting in a good segmentation in the presence of noise by combining with spatial constrained fuzzy C-means(SCFCM)segmentation. Experiments on simulated T1 images show the efficiency.

英文摘要:

This paper presents a relevance vector regression (RVR) based on parametric approach to the bias field estimation in brain magnetic resonance (MR) image segmentation. Segmentation is a very important and challenging task in brain analysis, while the bias field existed in the images can significantly deteriorate the performance. Most of current parametric bias field correction techniques use a pre-set linear combination of low degree basis functions, the coefficients and the basis function types of which completely determine the field. The proposed RVR method can automatically determine the best combination for the bias field, resulting in a good segmentation in the presence of noise by combining with spatial constrained fuzzy C-means (SCFCM) segmentation. Experiments on simulated T1 images show the efficiency.

同期刊论文项目
期刊论文 7 会议论文 1
同项目期刊论文
期刊信息
  • 《中国生物医学工程学报:英文版》
  • 主管单位:
  • 主办单位:中国生物医学工程学会 天津泰达生物材料与医学工程研究所
  • 主编:顾方舟
  • 地址:北京东单3条5号
  • 邮编:100005
  • 邮箱:
  • 电话:010-65296448
  • 国际标准刊号:ISSN:1004-0552
  • 国内统一刊号:ISSN:11-2953/R
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:24