大型地下洞室爆破开挖通常需要考虑岩体完整程度的影响。以位于四川和云南交界的金沙江上的溪洛渡水电站特大断面地下主厂房浅孔台阶开挖爆破工程为研究背景,提出考虑初始损伤影响的岩石爆破损伤模型以及和初始损伤相关且可用于确定爆破破坏影响范围的判据。建立初始损伤和岩体完整性指数之间的关系式,使得提出的本构模型能考虑岩体完整程度的影响。通过编程将提出的本构模型应用到FLAC3D软件中,进行爆破数值模拟。首先分析岩石爆破破坏影响范围特性,然后以爆破破坏最大水平半径作为爆破破坏影响范围的特征参数,分析爆破破坏最大水平半径和岩石初始损伤、单段爆破药量以及爆破质点峰值振动速度之间的关系,得到不同初始损伤条件下爆破破坏对应的临界振动速度和安全允许炸药量。最后利用现场爆破试验、钻孔声波测试和质点峰值振动速度测试的结果验证数值模拟结果的合理性。研究结果表明:对于浅孔台阶爆破,水平径向爆破破坏影响范围随孔深的减小而增加,并在顶部平面达到最大值。该破坏边缘质点的峰值振动速度可作为爆破施工监测的安全判据。岩石初始损伤越大,初始损伤对爆破破坏最大水平半径的影响越显著。数值计算结果和现场试验结果较吻合。
The rock mass integrity was usually considered to have great influence on blasting excavation in a large underground chamber. Taking the short-hole blasting as research background for bench excavation of the main underground workshop with super-large section in Xiluodu hydroelectric power plant, located in the Jinsha River,at the junction of Sichuan and Yunnan in China, a model of rock blasting-induced damage taking initial damage into account was presented based on damage mechanics. The criterion for blasting-induced damage, which was related to the initial damage of rock, was also presented for determining the blasting-induced damage zone. The formula about the relation between the initial damage of rock and the integrity index of rock mass was proposed so that the presented model could consider the integrity of rock mass. The presented model was imported into the software FLAC3D by programming the numerical simulation for rock mass integrityion of blasting. Firstly, The analysis of the characteristics of rock blasting-induced damage zone of surrounding rock were made. Secondly, the maximum radius of blasting-induced damage zone in the horizontal-radial direction was considered as the characteristic parameter for the blasting-induced damage zone. The relations among the maximum horizontal radius of blasting-induced damage zone, the initial damage of rock, the blasting charge amount per delay interval and the peak particle velocity of vibration were also analyzed. As a result, the limited velocity of vibration and the safety charge amount corresponding to the rock damage under different initial damage were obtained. In the end, the results from tests on site including blasting tests, testing of peak particle vibration velocity and velocity of acoustic wave propagation in a borehole, were put forward. The rationality of numerical simulation was verified by the result comparisons between the tests on site and the numerical simulation. The results show that, for the short-hole bench blasting, the blasting-induced d