集合{1,2,…,N}的伪随机子集在密码学中有广泛的应用。Cecile Dartyge和Andras Stirktizy运用筛法证明了集合{1,2,…,Ⅳ}中无平方因子数构成的子集不是一个好的伪随机子集。研究集合{1,2,…,N}中无k次幂因子数构成的子集Qk(N),并对应地定义了序列EN(Qk(N))=(e1,e2,…,en),其中qN=card Qk(N)/N,en={1-qn,如果n为无k次幂因子数;-qN,其地。进而通过讨论序列EN(Qk(N))的伪随机测度,证明子集Qk(N)同样没有好的伪随机性。
The pseudo-random subsets of the set { 1,2, C6cile Dartyge and Andrtis S~rk~zy turned out by sifting that numbers does not have good pseudo-random properties. The numbers is considered. Define the sequence have lots of applications in the filed of cryptography. a subset of { 1,2,…,Nt containing the square free subset Qk(N) of {1,2, …,Nt containing the k-free EN( Qk( N) ) = ( e, ,e2,...,eN) ,whwer qN=card Qk(N)/N,en={1-qn if n is a k -free number;-qn,otherwise. Then it is shown that Qk (N) also does not have good pseudo-random properties by studying the pseudo-random measure of EN( Qk ( N) )