研究模 p的原根及其逆的差的渐近性质。利用广义Bernoulli数、Gauss和及Dirichlet L-函数的均值定理,得出Cochrane和与广义的Kloosterman和的一些混合均值公式。
To study the asymptotic property of the difference between a primitive root and its inverse modulo p (a prime) .By using the generalized Bernoulli numbers ,Gauss sums and the mean value theo-rems of Dirichlet L-functions ,some interesting hybrid mean value formulae involving the Cochrane sums and general Kloosterman sums are obtained .