一个近-三角剖分嵌入是指一个曲面上的嵌入图使得几乎所有的面都是三角形,至多只有一个可能的例外.文中作者证明了如下结论:如果一个图G在球面S0(或环面S1)上有近一三角剖分嵌入,那么G在每一个可定向曲面Sk有近-三角剖分嵌入,其中k=h,h+1,…,[β(G)/2],而h=0(或1)并且β(G)是图G的Betti数.特别地,G是上可嵌入的.
A near-triangular embedding is a graph embedded into some surface whose facial walks but one are 3-gons. In this paper the authors show that if a graph G is a triangulation of the sphere So (or the torus S1), then G has a near-triangular embedding into Sk for k =h,h+1,…,[β(G)/2], where h = 0(or 1) and β(G) is the Betti number of G.