弹子球作为一个理想模型可以用来描述受限边界腔中微观粒子运动的动力学特征。本文研究了介观二维偏心环形弹子球体系的动力学性质,利用相空间中的庞加莱截面分析了弹子球运动的特性,其结果可以为研究量子混沌和微腔输运提供理论指导。
Two-dimensional billiard systems have been a popular subject for exploring dynamics of mesoscopic systems. In this work,we choose an annular billiard as example,study its dynamical behavior by Poincaré surface of section in the phase space,which provide theoretical help for studying quantum chaos and micro cavity transport.