数据分发管理实现基于值的过滤,可进一步减少大规模仿真中盟员接收冗余数据的可能性和网络中的数据流量.数据分发管理实现的关键是区域匹配算法的实现,高效、精确的区域匹配一直是数据分发管理追求的目标.现有的区域匹配算法如直接匹配法、网格法、基于分类的算法等都不很理想,或者过滤效果不佳,或者耗时较大,难以适应大规模分布式仿真的需要.论文针对在区域比较多的大规模分布式仿真系统中,区域大都需要随着仿真的推进而频繁地被动态修改的实际特点,提出了一个基于索引排序的快速动态区域匹配算法——IOBM算法,该算法将范围的上下界分别各用一个节点表示,使用指针数组来索引每一维上的范围节点,数组元素的下标值表示对应的节点值,利用区域范围更新前后的信息,将匹配限定在移动区间之内,通过对移动区间之内的链表进行直接操作来完成匹配工作,因而大大减少了匹配计算的时间,实现了高效、精确的动态匹配.该算法尤其适合区域比较多的大规模分布式仿真的需要.
The HLA Data Distribution Management (DDM) service provides an abstract, application-driven data filtering capability. It can reduce the transmission and reception of irrelevant data. The key problem of its implementation is region matching algorithm. The current algorithms such as directly matching, grid-based, and sort-based approach are all not so perfect. They are either time consuming or inaccuracy in filtering, and are difficult to support large-scale simulation. Aiming at the characteristic of frequently region changing in large-scale simulation systems, a more effective matching algorithm based on intersecting information of region moving is proposed. It represents the upper bound and lower bound of a range with two nodes, and uses two indexed ordered tables to store the publication and subscription nodes of a dimension respectively. It uses range intersecting information during a range moving, and limits the matching computing only in the area of moving. Thereby it can greatly decrease the candidate ranges that need to do matching computing, thus can decrease the matching complexity greatly, and reach precise matching with high performance. This algorithm is extremely fit for the need of largescale distributed simulation that has a large number of regions.