针对竖炉生产中存在的煤气还原势未能充分利用、煤气消耗量高以及二氧化碳排放高等问题,设计出一种上部增设吹氧装置的竖炉.基于物料平衡和热平衡建立了上部吹氧竖炉的静态模型,并对其进行了数值求解模拟和分析.模拟结果表明,在典型条件下,上部吹氧竖炉每吨直接还原铁的还原煤气量为1404.67m3,吹氧量为20.32m3,煤气出口还原势降至0.56,排碳量减少26.25%,能耗减少19.56%.
In consideration of such problems as low gas utilization ratio, large gas consumption and high carbon dioxide emissions, a method was proposed by designing a new shaft furnace with oxygen injection into the upper zone. Based on the mass and energy bal- ances of gas and solid phases, a static model of the shaft furnace was developed to simulate the iron-making process in the shaft furnace. Calculating results show that under the typical operation conditions, the gas volume of the shaft furnace with oxygen injection is 1 404.67 m3 , and the oxygen volume is 20.32 m3 for per ton of direct reduction iron. In comparison with a traditional shaft furnace, the reduction potential of top gas decreases to 0.56, the carbon emission decreases by 26.25% , and the energy consumption decreases by 19.56%.