位置:成果数据库 > 期刊 > 期刊详情页
Effect of compensation doping on the electrical and optical properties of mid-infrared type-II InAs/GaSb superlattice photodetectors
  • ISSN号:1674-1056
  • 期刊名称:《中国物理B:英文版》
  • 时间:0
  • 分类:TN215[电子电信—物理电子学] O484.41[理学—固体物理;理学—物理]
  • 作者机构:[1]Laboratory of Nano-Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 相关基金:Project supported by the Natural Science Foundation of Beijing (Grant No. 4112058), the National Natural Science Foundation of China (Grant Nos. 60906027, 60906028, 61036010, and 60636030), and the Open Fund of Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education of China.
中文摘要:

This paper presents a theoretical study on the electrical and optical properties of mid-infrared type-II InAs/GaSb superlattices with different beryllium concentrations in the InAs layer of the active region. Dark current, resistance-area product, absorption coefficient and quantum efficiency characteristics are thoroughly examined. The superlattice is residually n-type and it becomes slightly p-type by varying beryllium-doping concentrations, which improves its electrical performances. The optical performances remain almost unaffected with relatively low p-doping levels and begin to deteriorate with increasing p-doping density. To make a compromise between the electrical and optical performances, the photodetector with a doping concentration of 3 × 1015 cm-3 in the active region is believed to have the best overall performances.

英文摘要:

This paper presents a theoretical study on the electrical and optical properties of mid-infrared type-II InAs/GaSb superlattices with different beryllium concentrations in the InAs layer of the active region. Dark current, resistancearea product, absorption coefficient and quantum efficiency characteristics are thoroughly examined. The superlattice is residually n-type and it becomes slightly p-type by varying beryllium-doping concentrations, which improves its electrical performances. The optical performances remain almost unaffected with relatively low p-doping levels and begin to deteriorate with increasing p-doping density. To make a compromise between the electrical and optical performances, the photodetector with a doping concentration of 3 ×10^15 cm-3 in the active region is believed to have the best overall performances.

同期刊论文项目
期刊论文 16 会议论文 2 专利 5
同项目期刊论文
期刊信息
  • 《中国物理B:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国物理学会和中国科学院物理研究所
  • 主编:欧阳钟灿
  • 地址:北京 中关村 中国科学院物理研究所内
  • 邮编:100080
  • 邮箱:
  • 电话:010-82649026 82649519
  • 国际标准刊号:ISSN:1674-1056
  • 国内统一刊号:ISSN:11-5639/O4
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:406