位置:成果数据库 > 期刊 > 期刊详情页
基于线性动态系统的视频压缩感知自适应改进
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP391.413[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]桂林电子科技大学信息与通信学院,广西桂林541004
  • 相关基金:国家自然科学基金资助项目(61166004)
中文摘要:

线性动态系统的视频压缩感知(CS-LDS)是指从随机采样数据中直接估计出模型参数,然而对所有视频帧采取同样的采样方式,使得采样数据存在一定的时间冗余。针对这一问题,结合自适应压缩采样技术提出了一种自适应的改进算法。首先,对视频信号建立线性动态系统(LDS)模型;然后,通过自适应压缩采样方法得到视频信号的采样数据;最后,通过采样数据估计出系统模型参数,实现视频信号的重构。实验结果表明,在不影响视频重构质量的条件下,所提方法相对于CS-LDS算法,不仅能够节省统一测量过程中20%~40%的采样数据,而且平均每帧能够节省0.1~0.3 s的运行时间。改进后的算法降低了采样数目与算法运行时间。

英文摘要:

The model parameters of Video Compressed Sensing of Linear Dynamic System( CS-LDS) can be estimated directly from random sampling data. If all video frames are sampled in the same way, the sampling data will be redundant. To solve this problem, an adaptive improvement algorithm based on adaptive compression sampling technology was proposed in this paper. Firstly, a Linear Dynamic System( LDS) model of the video signal was established. And then the sampling data of video signal was obtained by using the adaptive compression sampling method. Finally, the model parameters were estimated and the video signal was reconstructed by the sampling data. Without affecting the video reconstruction quality, the experimental results show that the proposed algorithm is better than the CS-LDS algorithm, it can not only reduce 20%- 40%sampling data in the uniform measurement process, but also save the average running time of 0. 1- 0. 3 s per frame. The improved algorithm reduces the number of samples and the algorithm's running time.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679