双壳层无机中空微球具有低密度、高比表面积、多级反射及可以容纳客体分子等特点,被广泛用于环境保护、生物医药、电子等领域。模板法具有简单、重复率高、预见性好等诸多优点,在制备双壳层无机中空微球的过程中被广泛采用。首先综述了硬模板法和软模板法两种传统模板法制备双壳层无机中空微球的研究进展,并在此基础上对溶胶-凝胶和液相沉积两种壳层形成机理及层层自组装法和一步法两种壳层形成方式进行了总结,最后介绍了双壳层无机中空微球在光催化、太阳能电池、锂离子电池及生物医药等领域的应用进展,并对双壳层无机中空微球的发展前景进行了展望。
Double-shelled inorganic hollow microspheres with low density, high surface area and multiple reflection ability, which can encapsulate small molecules, are widely used in environmental protection, drug delivery system, electronic and other fields. Templating method is particularly interesting and frequently used to fabricate double-shelled inorganic hollow microspheres due to simplicity, high repetition rate, good prediction and many other advantages. In this review, progresses of double-shelled inorganic hollow microspheres prepared via two traditional templating methods, i.e. hard templates and soft templates, are introduced. Moreover, two kinds of shell formation mechanism about sol-gel method and liquid phase deposition as well as two types of shell formation method about LBL method and one-step method are summarized. Then, applications of double-shelled inorganic hollow microspheres in photocatalysis, solar cells, lithium-ion batteries and biological medicine are discussed. Finally, perspectives on the future research and development of double-shelled inorganic hollow microspheres are proposed.