为了更好地对极化合成孔径雷达图像进行分类,提出了一种基于神经网络的混合方法.特征集包括图像的5个H/α系数和基于灰度共生矩阵的6个参数.采用主成分分析方法压缩特征维数,利用3层BP神经网络进行分类,并将Levenberg-Marquardt法与共轭梯度算法相结合求解网络权值.利用该算法对San Francisco地面的实测数据进行分类,实验结果显示该算法能有效分辨地形,且性能优于Wishart最大似然估计方法.