位置:成果数据库 > 期刊 > 期刊详情页
一种极化合成孔径雷达图像分类的混合方法
  • ISSN号:1001-0505
  • 期刊名称:《东南大学学报:自然科学版》
  • 时间:0
  • 分类:TN957.52[电子电信—信号与信息处理;电子电信—信息与通信工程]
  • 作者机构:[1]东南大学信息科学与工程学院
  • 相关基金:国家自然科学基金资助项目(60872075);东南大学优秀博士学位论文基金资助项目(YBJJ0908)
中文摘要:

为了更好地对极化合成孔径雷达图像进行分类,提出了一种基于神经网络的混合方法.特征集包括图像的5个H/α系数和基于灰度共生矩阵的6个参数.采用主成分分析方法压缩特征维数,利用3层BP神经网络进行分类,并将Levenberg-Marquardt法与共轭梯度算法相结合求解网络权值.利用该算法对San Francisco地面的实测数据进行分类,实验结果显示该算法能有效分辨地形,且性能优于Wishart最大似然估计方法.

同期刊论文项目
期刊论文 75 会议论文 9 专利 14
同项目期刊论文
期刊信息
  • 《东南大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:教育部
  • 主办单位:东南大学
  • 主编:毛善锋
  • 地址:南京四牌楼2号
  • 邮编:210096
  • 邮箱:xuebao@seu.edu.cn
  • 电话:025-83794323
  • 国际标准刊号:ISSN:1001-0505
  • 国内统一刊号:ISSN:32-1178/N
  • 邮发代号:28-15
  • 获奖情况:
  • 先后荣获第三届国家期刊奖百种重点期刊奖,2006-2...,2013年荣获首届江苏省新闻出版政府奖"报刊奖"
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23651