欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
期刊
> 期刊详情页
Binary level set methods for topology and shape optimization of a two-density inhomogeneous drum
ISSN号:0045-7825
期刊名称:Computer Methods in Applied Mechanics and Engineer
时间:0
页码:2970-2986
语言:英文
相关项目:非线性方程组迭代方法特征研究及并行计算
作者:
Wu, Qingbiao|Zhu, Shengfeng|Liu, Chunxiao|
同期刊论文项目
非线性方程组迭代方法特征研究及并行计算
期刊论文 26
同项目期刊论文
基于自适应网格变形的图像编辑算法
Variational piecewise constant level set methods for shape optimization of a two-density drum
Nonhomogeneous scaling optimization for realtime image resizing
Convergence ball and error analysis of Ostrowski-Traub's method
On the local convergence of inexact Newton-type methods under residual control-type conditions
Local convergence of a secant type method for solving least squares problems
Convergence radius of the modified Newton method for multiple zeros under Hölder continuous der
On convergence of a new secant-like method for solving nonlinear equations
A class of two-step Steffensen type methods with fourth-order convergence
New variants of Jarratt's method with sixth-order convergence
A new family of eighth-order iterative methods for solving nonlinear equations
Convergence ball and error analysis of a family of iterative methods with cubic convergence
On convergence of the modified Newton's method under Hölder continuous Fréchet derivativ
On the convergence of modified Newton methods for solving equations containing a non-differentiable
Numerical solution of the Falkner-Skan equation based on quasilinearization
Shape and topology optimization for elliptic boundary value problems using a piecewise constant leve
Kantorovich-type semilocal convergence analysis for inexact Newton methods
Convergence of the modified Halley's method for multiple zeros under Hölder continuous derivati
A class of modified Secant methods for unconstrained optimization
基于变分网格的曲面简化高效算法
广义p—级数的一个估计
Carleman不等式的一种新改进
对wallis双边不等式的一个改进及应用
Convergence analysis for the Secant method based on new recurrence relations
Convergence ball and error analysis of Ostrowski-Traub's method