欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
期刊
> 期刊详情页
On the local convergence of inexact Newton-type methods under residual control-type conditions
期刊名称:Journal of Computational and Applied Mathematics
时间:0
页码:218-228
语言:英文
相关项目:非线性方程组迭代方法特征研究及并行计算
作者:
Ioannis K. Argyros|Hongmin Ren|
同期刊论文项目
非线性方程组迭代方法特征研究及并行计算
期刊论文 26
同项目期刊论文
基于自适应网格变形的图像编辑算法
Variational piecewise constant level set methods for shape optimization of a two-density drum
Nonhomogeneous scaling optimization for realtime image resizing
Convergence ball and error analysis of Ostrowski-Traub's method
Local convergence of a secant type method for solving least squares problems
Convergence radius of the modified Newton method for multiple zeros under Hölder continuous der
Binary level set methods for topology and shape optimization of a two-density inhomogeneous drum
On convergence of a new secant-like method for solving nonlinear equations
A class of two-step Steffensen type methods with fourth-order convergence
New variants of Jarratt's method with sixth-order convergence
A new family of eighth-order iterative methods for solving nonlinear equations
Convergence ball and error analysis of a family of iterative methods with cubic convergence
On convergence of the modified Newton's method under Hölder continuous Fréchet derivativ
On the convergence of modified Newton methods for solving equations containing a non-differentiable
Numerical solution of the Falkner-Skan equation based on quasilinearization
Shape and topology optimization for elliptic boundary value problems using a piecewise constant leve
Kantorovich-type semilocal convergence analysis for inexact Newton methods
Convergence of the modified Halley's method for multiple zeros under Hölder continuous derivati
A class of modified Secant methods for unconstrained optimization
基于变分网格的曲面简化高效算法
广义p—级数的一个估计
Carleman不等式的一种新改进
对wallis双边不等式的一个改进及应用
Convergence analysis for the Secant method based on new recurrence relations
Convergence ball and error analysis of Ostrowski-Traub's method