位置:成果数据库 > 期刊 > 期刊详情页
Rapid synthesis of CNTs@MIL-101 (Cr) using multi-walled carbon nanotubes (MWCNTs) as crystal growth accelerator
  • ISSN号:1004-9541
  • 期刊名称:《中国化学工程学报:英文版》
  • 时间:0
  • 分类:TQ[化学工程]
  • 作者机构:[1]College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China, [2]School of Chemistry and Chemical Engineering, Xinjiang Normal University, Xinjiang 830054, China
  • 相关基金:Supported by the National Natural Science Foundation of China (21006053).
中文摘要:

In this work,hybrid material CNTs@MIL-101(Cr) was synthesized in 2 h using multi-walled carbon nanotubes(MWCNTs) as the crystal growth accelerator with hydrothermal method.The characteristic differences between the crystals of CNTs@MIL-101(Cr) and MIL-101 were investigated by N2 adsorption–desorption isotherms,X-ray diffraction(XRD),scanning electron microscope(SEM) and thermogravimetric analyzer(TGA).The results showed that MWCNTs embedding in the hybrid material provide more mesoporous volumes than that of MIL-101.Moreover,the fast synthesized crystals of CNTs@MIL-101(Cr) still preserve the octahedral shape like MIL-101 and have a larger size ranging from 1.5 to 2.0 μm which were approximately three times larger than that of MIL-101.In the proposed mechanism,the roles of MWCNTs played in the crystallization were discussed where MWCNTs can be seen as coaxial cylindrical tubes composed of multi-layer graphenes and the place where nucleation and crystal growth processes occur at the tubes’ out surface.Then,a crystal seeding layer bonding with the MWCNTs may be easily formed which accelerates the growth rate of MIL-101 crystals.Thus,larger crystals of CNTs@MIL-101(Cr) were formed due to the faster crystal growth rate of MIL-101.

英文摘要:

In this work, hybrid material CNTs@MIL-101 (Cr) was synthesized in 2 h using multi-walled carbon nanotubes (MWCNTs) as the crystal growth accelerator with hydrothermal method. The characteristic differences between the crystals of CNTs@MIL-101 (Cr) and MIL-101 were investigated by N2 adsorption-desorption isotherms, X-ray diffraction (XRD), scanning electron microscope (SEM) and thermogravimetric analyzer (TGA). The results showed that MWCNTs embedding in the hybrid material provide more mesoporous volumes than that of MIL-101. Moreover, the fast synthesized crystals of CNTs@MIL-101 (Cr) still preserve the octahedral shape like MIL-101 and have a larger size ranging from 1.5 to 2.0 μm which were approximately three times larger than that of MIL-101. In the proposed mechanism, the roles of MWCNTs played in the crystallization were discussed where MWCNTs can be seen as coaxial cylindrical tubes composed of multi-layer graphenes and the place where nucleation and crystal growth processes occur at the tubes' out surface. Then, a crystal seeding layer bonding with the MWCNTs may be easily formed which accelerates the growth rate of MIL-101 crystals. Thus, larger crystals of CNTs@MIL-101 (Cr) were formed due to the faster crystal growth rate of MIL-101.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国化学工程学报:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科协
  • 主办单位:中国化学工业与化学工程学会
  • 主编:
  • 地址:北京东城区青年湖路13号
  • 邮编:100011
  • 邮箱:cjche@cip.com.cn
  • 电话:010-64519487/88
  • 国际标准刊号:ISSN:1004-9541
  • 国内统一刊号:ISSN:11-3270/TQ
  • 邮发代号:
  • 获奖情况:
  • 1998年化工系统优秀信息成果一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),英国高分子图书馆,日本日本科学技术振兴机构数据库,中国中国科技核心期刊
  • 被引量:385