位置:成果数据库 > 期刊 > 期刊详情页
东江流域降水时间序列的混沌特征分析
  • 期刊名称:中山大学学报(自然科学版),2006,45(4): 111-115
  • 时间:0
  • 分类:P333.6[天文地球—水文科学;水利工程—水文学及水资源;天文地球—地球物理学]
  • 作者机构:[1]中山大学水资源与环境系,广东广州510275, [2]广东省水利电力勘测设计研究院,广东广州510170
  • 相关基金:国家自然科学基金资助项目(50579078);广东省自然科学基金资助项目(04009805)
  • 相关项目:华南地区剧烈人类活动下枯水径流特征时空变异性研究
中文摘要:

以广东省东江流域月降雨序列为例,在介绍相空间重构原理的基础上,探讨了混沌分析的主要定量指标:饱和关联维数D:和最大Lyapunov指数λ。得到该时间序列的饱和关联维数D2=3.93,最小嵌入维数m=8,最佳嵌入滞时τ=3个月,最大Lyapunov指数λ=0.253。并且采用主分量方法进一步验证了该序列具有混沌特性,指出该序列的预测时限不应超过4个月,对此结论则用ARMA(p,q)模型作了验证,为东江流域月降雨预测提供了较为科学的依据。

英文摘要:

Based on introducing the phase space reconstruction theory of chaotic time series, the main quantitative indexes of saturation correlation dimension D2 and maximal Lyapunov exponent A for chaotic analysis are discussed with the monthly rainfall time series of the Dongjiang River Valley in Guangdong province. The saturation correlation dimension, minimum embedding dimension, optimal built-in delay time and maximal Lyapunov exponent are calculated and given, that is D2 = 3.93, m = 8, τ = 3 and λ = 0. 253. On the basis of this, primary component analysis method is applied to validate its chaotic character. It is suggested that the forecasting length for this rainfall time serial should not exceed 4 months and this is verified with the model of ARMA. This time series chaotic analy- sis will provide a scientific gist for monthly rainfall forecasting in the Dongjiang River Valley.

同期刊论文项目
同项目期刊论文