提出热传导方程的修正C—N显格式,x2^(n+1),z(J-1)^(n+1)的差分格式的处理方法,对算法进行了稳定性及收敛性证明,得到了修正显武热传导方程的稳定性条件为r≤3.数值实验表明,该方法稳定性好,宜于直接在计算机上使用.
This paper describes a corrector Crank-Nicolson numerical method for solving the heat equation,and its different scheme is explicit formulation. We prove that the proposed method is conditionally stable when r≤3. Numerical experiment shows that this method is accurate and it can be used directly on computers.