称环R是右线性McCoy的,如果R[x]中非零线性多项式f(x),g(x)满足I(x)g(x)=0,则存在非零元素r∈R使得f(x)r=0.设a是环R的自同态,通过用斜多项式环R[x;a]中的元素代替一般多项式环R[x]中的元素而引入a-线性McCoy环的概念.讨论了a-线性McCoy环的基本性质和扩张性质.
A ring R is called right linearly McCoy, if whenever linear polynomials f(x), g(x) E R[x]/{0} satisfy f(x)g(x) = 0, there exists r E R/{0} such that f(x)r = 0. For a ring endomorphism a, we introduce the notion of an a-linearly McCoy ring by considering the polynomials in the skew polynomial ring R[x; a] in place of the ring R[x]. A number of properties of this generalization are established and extension properties of a-linearly McCoy rings are given.