位置:成果数据库 > 期刊 > 期刊详情页
基于小波分析的转子故障信号自适应降噪技术研究
  • 期刊名称:航空动力学报[J], 2008, 23(1): 9-16
  • 时间:0
  • 分类:TP277[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置] TN911.7[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]南京航空航天大学民航学院,南京210016
  • 相关基金:国家自然科学基金(50705042);航空科学基金(2007ZB52022)
  • 相关项目:基于耦合动力学与机器学习的转静碰摩耦合故障分析与辨识
中文摘要:

在转子故障信号的小波降噪研究中,降噪效果常常依赖小波分解层数、故障转子转速和信号的采样频率,难于自动完成.针对该问题,提出了一种转子故障信号的自适应小波降噪新方法,该方法先对原始数据进行重采样,然后将重采样信号用小波变换分解到规定的层数,最后运用Donoho软阈值法实现降噪.该方法无需人为选取小波分解层数,降噪过程自动完成.大量的仿真和实验算例验证了方法的正确有效性.

英文摘要:

In the current research on wavelet de-noising for rotor faults signal, the denoising effect often depends on the decomposing layer number, rotor rotating speed and signal sampling frequency. But, the de-noising process can not be realized automatically. For this reason, a new self-adaptive de-noising method for rotor fault signal was developed. Firstly, original data was re-sampled, secondly, re-sampled signal was decomposed to given layer number, finally, de-noising was achieved by Donoho soft threshold method. The denoising process can be performed automatically without manual selection of decomposing layer number. A number of examples from simulation and experiments verify the efficiency of this new method.

同期刊论文项目
同项目期刊论文