使用大气气候变化数据,改进了氯离子作用下腐蚀开始时间模型和腐蚀电流密度模型,分析了全球变暖(CO2浓度和温度)对RC桥梁在氯离子腐蚀作用下的锈胀开裂性能影响。考虑腐蚀影响的性能预测参数如气候变化、氯离子浓度、氯离子扩散过程、温度、湿度、结构尺寸参数、钢筋位置和性能退化机制等具有随机性和时变性,发展了基于时变可靠度理论的预测方法来预测RC桥梁在将来全球变暖作用下以及氯盐环境下将来服役100年内的开始腐蚀风险和平均锈胀开裂概率。研究发现:1)在预测氯离子腐蚀效应时,大气气候变化温室效应能够恶化混凝土腐蚀损伤效应,在预测时需要计入其效应;2)在浪溅区环境下的开始腐蚀概率和锈胀开裂比例比海岸线大气区环境下分别高了127%和140%,当结构位于距离海岸线1km以上区域时锈胀开裂比例降低到1%;3)对于保护层厚度为20mm和水灰比为0.55的混凝土,在将来100年内的开裂概率为0.893,这意味着大多数混凝土结构在服役期存在腐蚀损伤现象,将来需要大量的维修和维护工作。这些信息能够为决策人员应对温室效应和氯离子腐蚀对土木工程的影响做出应对措施提供支持。
Using the atmospheric climate change data, the present study modifies chloride-induced corrosion initiation model and corrosion current density model, and analyzes how greenhouse warming changes (CO2 and temperature) and its effects on corrosion-induced crack performance to RC bridges under chloride attacking. Due to the randomness of corrosive parameters such as climate change, chloride concentration, temperature, humidity and performance deterioration, this paper develops time-dependent reliability-based method to predict the probability of corrosion initiation and mean proportion of corrosion-induced cracking for RC bridges in service time of 100 years. It is found that atmospheric greenhouse warming increases effect of corrosion damage and should be considered for prediction of corrosion damage. For sea-spray region (Zone 1) the mean proportion of corrosion-induced cracking is 127% and 140% higher than that predicted for offshore atmospheric region (Zone 2). When structures are located 1 km way from coastline, the mean proportion of corrosion-induced cracking is reduced to be 1%. For a cover of 20mm and a w/c of 0.55, probability of corrosion-induced cracking is up to0.893 over next 100 years. This indicates corrosion damage for many concrete structures and therefore lots of maintenance and repair actions are needed. This work can provide information on the effects of greenhouse effect and chloride ion attack on civil engineering for decision makers to decide mitigation methods.