位置:成果数据库 > 期刊 > 期刊详情页
一种新的电能质量自适应滤波方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TM714[电气工程—电力系统及自动化] TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]华北电力大学信息工程系,北京102206
  • 相关基金:国家自然科学基金资助项目(60402004)
中文摘要:

在电能质量检测中,去噪和保留突变点信息是两个十分重要的问题。为此提出了一种新的基于梯度倒数加权平均算法的自适应滤波方法。该方法首先对电能质量采样信号点建立五个模板,依据检测点与五个模板均值的梯度变化规律,进行突变点判决。在传统梯度法的基础上,选择最佳模板,并用该模板均值与模板内各点幅值的差值代替传统梯度算法中的梯度值,然后对不同类型的点采用不同的算法去噪。实验结果表明,与传统的梯度倒数加权算法和五点均值滤波法相比,改进的算法能够更好地清除噪声,同时较好地保留突变点信息,有针对性地解决了电能质量检测中的两大重要问题。

英文摘要:

Novel gradient inverse weighting filter was proposed for two crucial issues in power quality detection, which were the de-noising and keeping the break points' information of the power quality signal. Firstly, this paper designed five cover templates for each point, and judged the points that were break, according to the variety rule of disparities, which were the denoised point magnitude with the average magnitude of each cover template. Then the de-noised point was processed in one cover template, which average magnitude was most close to the de-noised point magnitude. Calculating the disparity value of the average magnitude with each point in this template, it was efficient to take this disparity value instead of the gradient value in the classical gradient inverse weighting method. However, this novel filter is adaptive to carry on the different de-noising method for the non-break points and the break points. The simulation experiment results indic, ate that, for the effects of de-noising and keeping the brake-points' information, this new filter was much better than the classical gradient inverse weighting filter and the average filter, and it effectively resolves the two important problems in power quality detection.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049