位置:成果数据库 > 期刊 > 期刊详情页
一般二步幂零群上Laplacian算子的基本解
  • ISSN号:1000-4424
  • 期刊名称:《高校应用数学学报:A辑》
  • 时间:0
  • 分类:O175.3[理学—数学;理学—基础数学]
  • 作者机构:[1]浙江大学理学部数学系,浙江杭州310027
  • 相关基金:国家自然科学基金(11171298)
中文摘要:

考虑(2n+p)维空间R~(2n)×R~p上的向量场X_j,j=1,…,2n.通过构造二步幂零Lie群,利用群上的Fourier变换的方法得到了△=1/2∑_(j=1)~(2n) X_j~2的基本解.首先由二步幂零群的Fourier变换理论得到了群上的Plancherel公式,逆公式以及△的表示,即△通过群上的Fourier变换转化为一个可逆的Hilbert-Schmidt算子,其次,通过群上的Plancherel公式得到的逆算子定义一个缓增分布,最后,利用Heimite函数和Laguerre函数的性质得到了基本解的积分表达式.

英文摘要:

Consider the vector fieldsX_j in R~(2n)×R~p,j = 1,...,2n.By constructing the nilpotent Lie group of step two,the fundamental solution of△=1/2∑_(j=1)~n X_j~2 is got.First,by using the group Fourier transform of the nilpotent Lie group of step two,the Plancherel formula and inverse formula are got and the Fourier transform of△is also found,i.e.,an invertible Hilbert-Schmidt operator.Secondly, a tempered distribution is defined by using the Plancherel formula.Finally,the integral form of the fundamental solution is followed by using the related propositions of Hermite function and Laguerre function.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《高校应用数学学报:A辑》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:浙江大学 中国工业与应用数学学会
  • 主编:林正炎 李大潜
  • 地址:杭州市玉泉浙江大学数学系
  • 邮编:310027
  • 邮箱:amjcu@zjy.edu.cn
  • 电话:0571-87951602
  • 国际标准刊号:ISSN:1000-4424
  • 国内统一刊号:ISSN:33-1110/O
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:3669