象发辫组和一般 Artin 那样的一些低层组的外部直接产品组织,随它上的一种特殊的组行动,提供一个安全密码的计算平台,它能在计算历元的量保持安全。这个新平台,亚群根问题,多变体的亚群根问题和亚群 ActionProblem 上的三个难问题被论述并且很好分析了,它都没与 conjuga-cy 有关系。新安全公钥加密系统和关键协议协议基于这些难问题被设计。新秘密成员系统能在除在发辫或 Artingroups 以外的一般的组环境被实现。
External direct product of some low layer groups such as braid groups and general Artin groups, with a kind of special group action on it, provides a secure cryptographic computation platform, which can keep secure in the quantum computing epoch. Three hard problems on this new platform, Subgroup Root Problem, Multi-variant Subgroup Root Problem and Subgroup Action Problem are presented and well analyzed, which all have no relations with conjugacy. New secure public key encryption system and key agreement protocol are designed based on these hard problems. The new cryptosystems can be implemented in a general group environment other than in braid or Artin groups.