设E是一致凸Banach空间,且具有一致Gteaux可微范数,C是E的一个非空闭凸子集,T是渐近非扩张映射。对于任意x∈C,本文引入Cesàro意义上的修正Ishikawa迭代:x0=x∈C,yn=γnun+δnxn+(1-γn-δ)n+11∑j=0nTjxn,xn+1=μnvn+αnγf(xn)+βnxn+[(1-μn-βn)I-αnA]n+11∑j=0nTjyn,n≥0在适当的条件下证明此迭代序列的强(弱)收敛性。
Let Cbe a nonempty closed convex subset of a uniformly convex Banach space Ewith a uniformly Gteauxdifferentiablenorm.Suppose that T∶C →Cis an asymptotically nonexpansive mapping.For an arbitrary initial value x ∈C,we introduce the modified Ishikawa iteration of its Cesàro means:x0 =x∈C arbitrarily chosen,yn=γnun+δnxn+(1-γn-δ)n+11∑j=0nTjxn,xn+1=μnvn+αnγf(xn)+βnxn+[(1-μn-βn)I-αnA]n+11∑j=0nTjyn,n≥0and prove its strong and weak convergence under some mild conditions.