位置:成果数据库 > 期刊 > 期刊详情页
求不定二次规划问题全局解的单调化方法
  • ISSN号:1000-7857
  • 期刊名称:科技导报
  • 时间:2014.6.28
  • 页码:58-61
  • 分类:O221[理学—运筹学与控制论;理学—数学]
  • 作者机构:[1]河南师范大学数学与信息科学学院,新乡453007
  • 相关基金:国家自然科学基金项目(11171094,11171368)
  • 相关项目:比式和分式规划问题的稳健解方法研究
中文摘要:

不定二次规划是全局优化的一类重要问题,在金融、统计、工程设计等实际问题中有广泛应用。但此类问题可能存在多个非全局最优的局部极值点,所以求其全局最优解变得十分困难。运用单调优化理论提出一种求不定二次规划问题全局最优解的新方法:通过引入新变量将问题等价转化为单调优化问题,然后利用问题的单调结构进行缩减、分割、辅助问题最优值的定界等过程获得近似全局最优解。该解不仅可行且能充分接近真实的全局最优解,数值结果表明方法可行有效。

英文摘要:

The generalized quadratic programming (GQP) is an important class of global optimization problems with wide applications in the fields of financial management, statistics and design engineering, with multiple local optimal solutions differing from the global solution. Thus, it is very difficult to obtain a global optimal solution for the GQP. Many solution methods were developed for globally solving the GQPs in a special form and the general form. However, these approaches may sometimes provide an infeasible solution, or one far from the true optimum. To overcome these limitations, a monotonic optimization approach is proposed for the GQP. In the approach, the original problem is first converted into an equivalent monotonic optimization problem, whose objective function is just a simple univariate by exploiting the particular features of this problem. Then, a range division and compression approach is used to reduce the range of each variable. Tightening variable bounds iteratively allows the proposed method to reach an approximate solution within an acceptable error by using monotonic functions, in which such solution is adequately guaranteed to be feasible and to be close to the actual global optimal solution. At last, several numerical examples are given to illustrate the feasibility and efficiency of the present algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《科技导报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国科学技术协会
  • 主编:项昌乐
  • 地址:北京市海淀区学院南路86号科技导报社
  • 邮编:100081
  • 邮箱:kjdbbjb@cast.org.cn
  • 电话:010-62138113
  • 国际标准刊号:ISSN:1000-7857
  • 国内统一刊号:ISSN:11-1421/N
  • 邮发代号:2-872
  • 获奖情况:
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),英国农业与生物科学研究中心文摘,波兰哥白尼索引,美国乌利希期刊指南,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24858