传统的减法聚类算法时间复杂度高,算法不具有分布式特性,不满足大数据处理的要求.提出一种基于Hadoop的改进减法聚类算法,利用MapReduce模型改进减法聚类执行过程,实现求解邻域半径、初始化密度指标、更新密度指标和划分数据记录等过程的并行化.实验结果表明,同传统的串行算法相比,提出的算法能够对大数据进行快速聚类,同时表现出良好的稳定性与扩展性.