位置:成果数据库 > 期刊 > 期刊详情页
基于AutoEncoder的增量式聚类算法
  • ISSN号:1000-7180
  • 期刊名称:《微电子学与计算机》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:大连理工大学软件学院,辽宁大连116620
  • 相关基金:国家自然科学基金项目(U1301253)
中文摘要:

针对目前数据量增长迅速,数据特征多,存储空间不足等问题,提出了基于AutoEncoder的增量式聚类算法(ANIC).首先利用AutoEncoder学习数据样本的特征,进行低维特征整合,得到数据样本的压缩表示形式,然后在原有聚类结果的基础上,通过一遍式读取数据和动态更新聚类中心点,对新生成样本进行增量式聚类.在对UCI的四个数据集进行聚类时,实验结果表明该算法能够得到优于k均值算法(Kmeans)和模糊c均值算法(FCM)的聚类效果.同时,该算法的时间消耗低,能够识别离群点,能够有效地对不断增加的数据集进行增量式聚类.

英文摘要:

The rapid growth of data result in a lot of problems such as the data have too many features, me Lack of storage space etc. This paper propose a new incremental clustering algorithm based on AutoEncoder . Firstly , the AutoEncoder are used to learn the features of the data , integrate the low-dimensional feature , and get the reduced representation from the raw data. Then run incremental clustering on the new data base on the original clustering results by reading the data once and dynamically update clustering centers . Experimental results show that the proposed algorithm can obtain a comparable clustering performance with k-means algorithm (Kmeans) and fuzzy means algorithm (FCM) on the four data set in UCI database. Meanwhile, the time consumption of the proposed algorithm is low, it can achieve incremental clustering and identify the outliers for the increasing data set effectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《微电子学与计算机》
  • 中国科技核心期刊
  • 主管单位:中国航天科技集团公司
  • 主办单位:中国航天科技集团公司第九研究院第七七一研究所
  • 主编:李新龙
  • 地址:西安市雁塔区太白南路198号
  • 邮编:710065
  • 邮箱:mc771@163.com
  • 电话:029-82262687
  • 国际标准刊号:ISSN:1000-7180
  • 国内统一刊号:ISSN:61-1123/TN
  • 邮发代号:52-16
  • 获奖情况:
  • 航天优秀期刊,陕西省优秀期刊一等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17909