In this work, we consider an evolutionary prisoner’s dilemma game on a homogeneous random network with the richest-following strategy adoption rule. By constructing homogeneous random networks from a regular ring graph, we investigate the effects of topological randomness on cooperation. In contrast to the ordinary view that the presence of small amount of shortcuts in ring graphs favors cooperation, we find the cooperation inhibition by weak topological randomness. The explanations on the observations are presented
In this work, we consider an evolutionary prisoner's dilemma game on a homogeneous random network with the richest-following strategy adoption rule. By constructing homogeneous random networks from a regular ring graph, we investigate the effects of topologicaJ randomness on cooperation. In contrast to the ordinary view that the presence of smaJ1 amount of shortcuts in ring graphs favors cooperation, we find the cooperation inhibition by weak topological randomness. The explanations on the observations are presented.