位置:成果数据库 > 期刊 > 期刊详情页
基于小波包和SVM的小麦碰撞声分类研究
  • ISSN号:0258-7971
  • 期刊名称:《云南大学学报:自然科学版》
  • 时间:0
  • 分类:TP391.42[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]陕西师范大学计算机科学学院,陕西西安710062
  • 相关基金:国家自然科学基金(10974130)
中文摘要:

采用小波包分析小麦完好粒、虫蛀粒、霉变粒的碰撞钢板声信号,提取3类信号节点能量、奇异值、节点包络信号的功率谱熵和谱熵臂4个特征,使用支持向量机进行分类,对3类小麦颗粒的识别正确率均在92%以上.实验结果表明,不同类型的小麦碰撞声信号特征差异较大,此研究具有较强的实际应用价值,为小麦颗粒的分拣提供了可行方法.

英文摘要:

kernels, insect In this paper, the wavelet packet was used to analyse the impact acoustic damaged kernels and moldy damaged kernels. singularity value, power spectral entropy and spectral entropy signals of un - damaged The characteristic features including node energy, arm of node envelope signals were extracted, and the features were classified in support vector machine. The recognition accuracy rate in classification of three types of wheat kernels were above 92 %. The experimental result shows that each type of wheat impact signals features are much different, and this research has a more comprehensive value in application, and provides a new method for wheat kernels sorting.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《云南大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:云南省教育厅
  • 主办单位:云南大学
  • 主编:张力
  • 地址:昆明市呈贡新区
  • 邮编:650500
  • 邮箱:yndxxb@ynu.edu.cn
  • 电话:0871-5033829 5031498 5031662
  • 国际标准刊号:ISSN:0258-7971
  • 国内统一刊号:ISSN:53-1045/N
  • 邮发代号:64-29
  • 获奖情况:
  • 1999年荣获全国优秀高校自然科学学报及教育部优秀...,1997年荣获全国第二届优秀科技期刊评比二等奖,1995年全国重点大学优秀科技期刊评比二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),英国农业与生物科学研究中心文摘,波兰哥白尼索引,德国数学文摘,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:11696