位置:成果数据库 > 期刊 > 期刊详情页
面向遥感图像分割的自适应特征选择水平集模型
  • ISSN号:0469-5097
  • 期刊名称:《南京大学学报:自然科学版》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]河海大学计算机与信息学院,南京210098
  • 相关基金:国家自然科学基金(61170200,51079040),教育部中央高校基本科研业务费专项资金(2009820914)
中文摘要:

传统的水平集c—V模型主要关注颜色特征,对纹理特征研究得较少,而在遥感图像分割过程中,纹理特征亦具有很重要的作用;并且对于不同类型的遥感目标,颜色信息和纹理信息在分割过程中所起作用亦不相同.提出一种自适应特征选择的水平集Chan—Vese模型(C—V模型),把多个颜色特征分量和纹理特征分量作为初始特征集,通过建立相似性函数的距离度量来自适应地选择特征.同时,根据不同图像特点自适应地调整不同特征分量的权重,最后把这些特征以及相应的权重融入到c—V模型中,进而对遥感图像进行分割.与以往的方法相比,本文方法不仅取得了较好的分割效果,而且所需时间消耗更少,效率更高.

英文摘要:

In recent years, remote sensing has become a main source of information for the observation of the Earth. It is of great value to extract various information from those remote sensing images, such as the distribution of different land covers and man-made targets. Image segmentation is the first, fundamental step in the analysis of remote sensing image. In this paper, the problem of image segmentation is tackled from the perspective of pattern recognition and feature selection issue is introduced and given more emphasis. An adaptive level set model with feature selection for remote sensing image segmentation is proposed. The traditional Chan-Vese model (C-- V Model) based on level set pays much attention to the color feature, but with less emphasis on texture features. In the processing of remote sensing image, sometimes texture feature is more important for the purpose of image segmentation. To solve the problem, this paper firstly utilizes the components of different color spaces and the texture features as the initial feature set. Then feature selection is performed through local similarity analysis. Meanwhile, the weights of different features are automatically adjusted according to the characteristics of different targets. The selected features, together with their weights, are introduced into the C- V model as inputs to segment the remote sensing image. Experimental results on various targets in remote sensing imageries show thatthe newly proposed algorithm not only outperforms the traditional model efficiently, but also reduces the computational time greatly.

同期刊论文项目
期刊论文 22 会议论文 5 获奖 1
期刊论文 17 会议论文 8 专利 12
同项目期刊论文
期刊信息
  • 《南京大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:南京大学
  • 主编:龚昌德
  • 地址:南京汉口路22号南京大学(自然科学版)编辑部
  • 邮编:210093
  • 邮箱:xbnse@netra.nju.edu.cn
  • 电话:025-83592704
  • 国际标准刊号:ISSN:0469-5097
  • 国内统一刊号:ISSN:32-1169/N
  • 邮发代号:28-25
  • 获奖情况:
  • 中国自然科学核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9316