位置:成果数据库 > 期刊 > 期刊详情页
人工神经网络结合多光谱遥感数据用于立地质量评价
  • ISSN号:1000-0593
  • 期刊名称:《光谱学与光谱分析》
  • 时间:0
  • 分类:TP79[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]国家测绘地理信息局第一航测遥感院,陕西西安710054, [2]南京森林警察学院,江苏南京210046, [3]北京林业大学测绘与3S技术中心,北京100083, [4]北京林业大学生态研究中心,北京100083
  • 相关基金:国家科技支撑计划项目(2012BAH34801),北京市自然科学基金项目(091)0297),国家自然科学基金项目(30872038)资助.
中文摘要:

多光谱遥感数据蕴含着大量的地表立地信息,而传统立地质量评价体系主要使用了人工地面调查数据。为了建立一套有效的立地质量评价体系,以内蒙古赤峰市旺业甸林场为研究对象,基于研究区域的多光谱遥感数据结合地面小班调查数据,采用一种改进的反向传播人工神经网络(backPropagationartificialneuralnetwork,BPANN)模型,以落叶松为例,建立了遥感光谱因子结合立地因子与地位指数关系的神经网络模型,对研究区域的小班进行立地质量评价研究。通过训练数据集的敏感度分析剔除弱相关或不相关的因子,简化了神经网络的规模,提高了网络的训练效率,得到了最优的地位指数预测模型,模型的预测精度达到95.36%,与使用传统小班调查数据建立的神经网络模型的预测结果进行了比较,精度提高了9.83%,说明使用多光谱遥感数据+小班调查数据确定的落叶松地位指数预测模型具有最高的预测精度。多光谱遥感数据十分适用于森林立地质量评价,改进BP神经网络具有理想的预测精度,充分证实了该方法的有效性和优越性。

英文摘要:

Multispectral remote sensing data containing rich site information are not fully used by the classic site quality evalua- tion system, as it merely adopts artificial ground survey data. In order to establish a more effective site quality evaluation sys- tem, a neural network model whieh combined remote sensing spectra factors with site factors and site index relations was estab- lished and used to study the sublot site quality evaluation in the Wangyedian Forest Farm in Inner Mongolia Province, Chifeng City. Based on the improved back propagation artificial neural network (BPANN), this model combined multispectral remote sensing data with sublot survey data, and took larch as example, Through training data set sensitivity analysis weak or irrelevant factor was excluded, the size of neural network was simplified, and the efficiency of network training was improved. This opti- mal site index prediction model had an accuracy up to 95.36%, which was 9.83% higher than that of the neural network model based on classic sublot survey data, and this shows that using multi-spectral remote sensing and small class survey data to deter- mine the status of larch index prediction model has the highest predictive accuracy. The results fully indicate the effectiveness and superiority of this method.

同期刊论文项目
期刊论文 31 会议论文 2
同项目期刊论文
期刊信息
  • 《光谱学与光谱分析》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国光学学会
  • 主编:高松
  • 地址:北京海淀区魏公村学院南路76号
  • 邮编:100081
  • 邮箱:chngpxygpfx@vip.sina.com
  • 电话:010-62181070
  • 国际标准刊号:ISSN:1000-0593
  • 国内统一刊号:ISSN:11-2200/O4
  • 邮发代号:82-68
  • 获奖情况:
  • 1992年北京出版局编辑质量奖,1996年中国科协优秀科技期刊奖,1997-2000获中国科协择优支持基础性高科技学术期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国生物医学检索系统,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:40642