位置:成果数据库 > 期刊 > 期刊详情页
CBERS与ALOS卫星影像融合前后图像质量对比与评价
  • 期刊名称:林业调查规划
  • 时间:0
  • 页码:22-27
  • 语言:中文
  • 分类:S771.8[农业科学—森林工程;农业科学—林学] TP75[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]北京林业大学“3S”技术中心,北京100083
  • 相关基金:国家自然科学基金(30872038林火蔓延模型).
  • 相关项目:基于知识发现的林火模型研究
中文摘要:

使用目视辨别以及客观评价指标对融合卫星影像的亮度信息(均值)、空间细节信息(方差、信息墒、平均梯度)、光谱信息(相关系数)、纹理信息(角二矩阵)4个方面研究评价CBERS和ALOS数据融合后的图像质量.结果表明,CBERS多光谱影像信息量更丰富,而ALOS的蓝色波段信息量明显低于其他波段.CBERS数据与ALOS数据自身融合以及CBERS的全色与ALOS的多光谱融合后的目视判别及定性评价效果较好,CBERS的多光谱和ALOS的全色融合效果稍差.各种评价参数的计算结果表明,中巴卫星的全色与多光谱融合信息量较ALOS丰富,CBERS的全色与ALOS的多光谱融合则表现出更多的优点,更适合在生产实践中应用.

英文摘要:

Using visual evaluation as well as the objective evaluation indexes, the quality of the fusion images of CBERS and ALOS was studied and evaluated from the intensity formation (mean) , spatial detail information ( variance & entropy & definition), spectral information (correlation coefficient) and texture information (Angular Sencond-Moment). The results showed that the original images of CBERS- mul has amount information, while ALOS' s blue multi-spectral is significantly lower than other bands. The fusion of number CBERS-mul with CBERS-pan, ALOS-mul with ALOS-pan and ALOS-mul with CBERS-pan have a good quality either in visual or qualitative evaluation. The effect of CBERS-mul with ALOS-pan is not good. The calculation result of all evaluation parameters indicate that CBERS-mul with CBERS-pan is better than ALOS-mul with ALOS-pan, and ALOS-mul with CBERS-pan has a lot of advantages in intensity formation, spatial detail information and texture information, it is suitable for the use of actual production frequently.

同期刊论文项目
期刊论文 31 会议论文 2
同项目期刊论文