位置:成果数据库 > 期刊 > 期刊详情页
一种用GEP进化神经网络结构和权值的方法
  • ISSN号:1000-582X
  • 期刊名称:《重庆大学学报:自然科学版》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西北农林科技大学机械与电子工程学院,陕西杨陵712100, [2]西北农林科技大学信息工程学院,陕西杨陵712100, [3]青岛农业大学信息科学与工程学院,山东青岛266109, [4]威海职业技术学院机电工程系,山东威海264210
  • 相关基金:国家自然科学基金资助项目(30471138)
中文摘要:

提出一种用基因表达式编程(gene expression programming,GEP)自动设计神经网络结构和权值的算法。论述算法的基本思想和基本操作,针对算法的早熟现象和变异率低问题进行了相应的改进,给出这种算法的应用实例。实验结果表明,GEP可以自动设计神经网络的结构,并能给出优化的网络权值,与其他优化算法相比,收敛速度更快。

英文摘要:

An algorithm for automatic designation of the architecture and the weights of neural networks using gene expression programming (GEP) was presented. The fundamental ideas and procedures of the algorithm were discussed. The algorithm was improved to solve the problems of prematurity and lower variance rate. An application for neural networks designation was given. The experimental results indicate that the proposed GEP approach may evolve the architecture of neural network, and can obtain the weights more precisely. Compared to other conventional evolutional algorithms, GEP shows faster convergence.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《重庆大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:重庆大学
  • 主编:王时龙
  • 地址:重庆市沙坪坝正街174号
  • 邮编:400044
  • 邮箱:cdxhz@equ.edu.cn
  • 电话:023-65102302
  • 国际标准刊号:ISSN:1000-582X
  • 国内统一刊号:ISSN:50-1044/N
  • 邮发代号:78-16
  • 获奖情况:
  • 中国高校精品科技期刊,重庆市一级期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:26478