位置:成果数据库 > 期刊 > 期刊详情页
基于改进型基因表达式编程的神经网络优化设计
  • ISSN号:1000-7024
  • 期刊名称:《计算机工程与设计》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]青岛农业大学理学与信息工程学院,山东青岛266109
  • 相关基金:国家自然科学基金项目(30471138)
中文摘要:

提出一种用基因表达式编程(GEP)自动设计神经网络的算法。针对标准GEP算法在优化神经网络过程中的早熟现象和变异率低问题,对算法进行了改进,并给出算法的具体应用实例。与其它优化算法的对比实验表明,GEP是一种有效的神经网络设计方法,并且改进的GEP算法比标准GEP算法进化效率高,将收敛率提高了37个百分点,收敛速度快,进化代数仅是标准算法的58%。

英文摘要:

An algorithm for automatic design of neural networks using gene expression programming(GEP) is presented.The standard GEP is improved to solve the problem of prematurity and lower mutational rate in optimizing neural networks.An application of designing neural networks is formulated and compared with others.The results demonstrated that the performance of modified algorithm is much better than that of standard GEP in that it not only has higher evolution efficiency,improving convergence rate by 37 percentage point but has faster convergence speed with only 58% evolutionary generations of standard GEP algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与设计》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团
  • 主办单位:中国航天科工集团二院706所
  • 主编:汤铭瑞
  • 地址:北京142信箱37分箱
  • 邮编:100854
  • 邮箱:ced@china-ced.com
  • 电话:010-68389884
  • 国际标准刊号:ISSN:1000-7024
  • 国内统一刊号:ISSN:11-1775/TP
  • 邮发代号:82-425
  • 获奖情况:
  • 中国科学引文数据库来源期刊,中国学术期刊综合评价数据库来源期刊,中国科技论文统计与分析用期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:45616