针对传统社区识别算法中需要根据先验知识设定参数、社区划分结果具有随机性及复杂度过高的问题,提出一种基于拓扑势的局部化重叠社区识别算法.该算法通过引入拓扑势计算节点的影响力,利用节点间的局部相似性度量指标,采用标签传播策略进行重叠结构的社区识别.在真实网络及人工合成网络上与多种经典算法进行对比实验验证了算法的高效性.
We proposed a local community detection algorithm based on topological potential,which uses topological potential of nodes to calculate their influence,and then takes the strategy of label propagation algorithm to detect overlap community structures via a new measurement index based on the similarity of local structures.The algorithm solves the problems of parameter setting,random result and high complexity of traditional algorithms.Algorithm comparison experiments on real world and computer generated datasets show that it is efficient.