位置:成果数据库 > 期刊 > 期刊详情页
基于BP神经网络的改进增量式PID暖通控制器设计
  • ISSN号:1671-4512
  • 期刊名称:《华中科技大学学报:自然科学版》
  • 时间:0
  • 分类:TP273.2[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]哈尔滨工程大学计算机科学与技术学院,哈尔滨150001, [2]黑龙江省民政厅信息中心,哈尔滨150001
  • 相关基金:国家自然科学基金项目(61073043)
中文摘要:

为了克服传统PID控制在暖通空调系统应用中超调量大、控制精度低的缺陷,提出了一种基于BP神经网络的PID控制器设计方法。利用BP神经网络具有很强的学习能力、任意逼近非线性能力、自适应性和鲁棒性等特点,将BP神经网络与PID控制结合,实现了PID的3个控制参数的在线自整定。仿真结果表明,该方法可以显著改善系统的动态性能和控制精度,实现了PID控制参数的在线动态调整,避免了由于系统模型和结构参数变化导致的控制效果不稳定。

英文摘要:

Aiming at solving the existing problems that the traditional PID controller applied to heating ventilation and air conditioning system has such as large overshoot and low accuracy,an improved PID controller designing approach based on BP(Back Propagation) Neural Network are proposed.The solution takes advantage of the characteristics of BP Neural Network,such as strong learning ability,arbitrary nonlinear approximation ability,self-adaptability and robustness,combines the BP Neural Network algorithm and PID control algorithm,and realizes the on-line self-tuning of three PID parameters.The simulation results demonstrate that the method significantly improves system's dynamic performance and control accuracy,ensures the dynamic adjustment of control parameters,and avoids the unstable control effects caused by system model and structure parameters changing.

同期刊论文项目
期刊论文 132 会议论文 3
同项目期刊论文
期刊信息
  • 《华中科技大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:华中科技大学
  • 主编:丁烈云
  • 地址:武汉珞喻路1037号
  • 邮编:430074
  • 邮箱:hgxbs@mail.hust.edu.cn
  • 电话:027-87543916 87544294
  • 国际标准刊号:ISSN:1671-4512
  • 国内统一刊号:ISSN:42-1658/N
  • 邮发代号:38-9
  • 获奖情况:
  • 全国优秀科技期刊,首届国家期刊奖,第二届全国优秀科技期刊评比一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:21013