该文研究了微差分方程f′(z)2+P(z)2f(z+c)2=Q(z)和.f′(z)2+P(z)2(f(z+c)-f(z)2=Q(z),其中P(z)和Q(z)为非零多项式.如果该微差分方程有一个有限级的超越整函数解,那么就可得到这个解的精确表达式.
In this paper,we investigate the differential-difference equations f'(z)2 + P(z)2f(z +c)2 = Q{z) and f'{z)2 + P(z)2(f(z + c)- f(z)2 = Q(z),where P(z) and Q(z) are nonzero polynomials.If the differential-difference equations admit a transcendental entire solution of finite order,then we can obtain the exact expression of the solution.