设G是任意的户阶连通图且V(G):{x1,…,xp,},P。和c。分别表示有n个顶点的路和圈,WGμ表示把kC,的每个分支的一个2度点重迭在一起得到的图.PWGμ表示把P。的n个顶点与nG的每一个分支的第i个顶点依次重迭后得到的新图,用WGμ+Dp表示把图mh+。的(kn+1)个顶点与(kn+1)G的每一个分支的第i个顶点依次重迭后得到的新图.运用图的伴随多项式的性质,证明了两类图簇溅WGμpU(2k-1)G与(WGμ,Gc(iImU((k-1)£+(2k-1))G的伴随多项式的因式分解定理,这里n-2+q-1,进而证明了这类图簇的补图的色等价图的结构特征.
Let G be arbitrary connected graph with V(G)= {Xl,,SCp }, and let P., be the path with n vertices and let C. be the cycle with n vertices, and let WGμ,+1 be the graph consisting of kCn+l by coinciding pG the graph consisting of Pn and nG by a vertex of degree 2 of each component of kC,,+l. We denote by -np coinciding each vertex of P. with the i-th vertex of every component of nG and let be the graph 60(kn+ 1)p