位置:成果数据库 > 期刊 > 期刊详情页
基于复合粒度计算的频繁模式挖掘研究
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP311.13[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]电子科技大学计算机科学与工程学院,成都611731, [2]重庆三峡学院计算机科学与工程学院,重庆404000
  • 相关基金:国家自然科学基金资助项目(61173172); 重庆市前沿与应用基础研究资助项目(cstc2014jcyj A40035); 重庆市教委科学技术研究资助项目(KJ1401010)
中文摘要:

针对经典频繁模式挖掘算法存在的不足,提出了一种基于复合粒度计算的频繁模式挖掘算法。该算法借助复合粒度计算方法双向搜索频繁模式,即首先通过二进制的按位取反运算获得复合粒度内涵的像,然后构建复合粒度计算发现频繁模式。虽然该算法需要产生候选项,但它只需扫描一次数据库,减少了I/O开销;算法通过线性数组存储复合信息粒度减少了内存使用。理论分析和实验比较表明,其效率优于经典的频繁模式挖掘算法,且内存利用率比较高。

英文摘要:

Aiming to the shortcomings existing in the typical algorithms of frequent patterns mining,this paper proposed an algorithm of frequent patterns mining based on composite granular computing. The algorithm doubly searched frequent patterns by composite granular computing,namely,it firstly got the image of the intension of composite granules via the complementer of binary number on each bit,and then constructed composite granular computing to discover frequent patterns. The algorithm needed to generate candidate,but it only needed to scan the database once to reduce the I / O overhead. The algorithm used the linear array to save composite information granules to reduce the usage of memory. The theoretical analysis and experimental comparison show that the efficiency of the algorithm is better than present typical algorithms of frequent patterns mining,and its utilization of memory is higher.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049