位置:成果数据库 > 期刊 > 期刊详情页
基于S-BGD和梯度累积策略的改进深度学习方法及其在光伏出力预测中的应用
  • ISSN号:1000-3673
  • 期刊名称:《电网技术》
  • 时间:0
  • 分类:TM721[电气工程—电力系统及自动化]
  • 作者机构:广西电力系统最优化与节能技术重点实验室(广西大学),广西壮族自治区南宁市530004
  • 相关基金:国家重点研发计划支持项目(2016YFB0900100); 国家自然科学基金项目资助(51377027)
中文摘要:

为提高光伏出力的预测精度,提出了一种改进深度学习算法的光伏出力预测方法。首先,针对传统的深度学习算法采用批量梯度下降(batch gradient descent,BGD)法训练模型参数速度慢的问题,利用随机梯度下降(stochastic gradient descent,SGD)法训练快的优点,提出了一种改进的随机-批量梯度下降(stochastic-batch gradient descent,S-BGD)搜索方法,该方法兼具SGD和BGD的优点,提高了参数训练的速度。然后,针对参数训练过程中容易陷入局部最优点和鞍点的问题,借鉴运动学理论,提出了一种基于梯度累积(gradient pile,GP)的训练方法。该方法以累积梯度作为参数的修正量,可以有效地避免训练陷入局部点和鞍点,进而提高预测精度。最后,以澳大利亚艾丽斯斯普林光伏电站的数据为样本,将所提方法应用于光伏出力预测中,验证所提方法的有效性。

英文摘要:

To improve accuracy of photovoltaic(PV) power forecasting, this paper proposes a new forecasting method based on improved deep learning algorithm. Firstly, aiming at the problem of low training speed of conventional deep learning algorithm often using batch gradient descent(BGD) training method, a method combing stochastic gradient descent(SGD) and BGD methods are proposed. By using SGD method, training speed can be greatly improved. Secondly, to eliminate the problem of falling into local optimal points and saddle points during parameter training process, an improved method of gradient pile(GP) is proposed, using kinematic theory for reference. GP method uses cumulative gradient as the modified value to avoid local optimal points and saddle points. Finally, based on the data from Australia's Alice Springs PV power station, the proposed method is applied in its PV power forecasting. Forecasting results show that the proposed method has good performances in PV power forecasting.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电网技术》
  • 北大核心期刊(2011版)
  • 主管单位:国家电网公司
  • 主办单位:国家电网公司
  • 主编:张文亮
  • 地址:北京清河小营东路15号中国电力科学研究院内
  • 邮编:100192
  • 邮箱:pst@epri.sgcc.com.cn
  • 电话:010-82812976 82812543
  • 国际标准刊号:ISSN:1000-3673
  • 国内统一刊号:ISSN:11-2410/TM
  • 邮发代号:82-604
  • 获奖情况:
  • 中国优秀科技期刊,电力部优秀科技期刊,全国中文核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:66600