位置:成果数据库 > 期刊 > 期刊详情页
基于叶片及冠层叶绿素参数的冬小麦籽粒蛋白质含量预测研究
  • ISSN号:1000-0593
  • 期刊名称:光谱学与光谱分析
  • 时间:2014.7.1
  • 页码:1917-1921
  • 分类:S127[农业科学—农业基础科学]
  • 作者机构:[1]三峡大学科技学院,宜昌443002, [2]湖北省建筑质量检测装备工程技术研究中心,宜昌443002, [3]浙江大学遥感与信息技术应用研究所,杭州310029, [4]北京农业质量标准与检测技术研究中心,北京100097, [5]三峡大学计算机与信息学院,宜昌443002
  • 相关基金:湖北省建筑质量检测装备工程技术研究中心基金项目(CQTE201603); 国家自然科学基金(41371349)
  • 相关项目:冬小麦养分及长势空间异质性遥感监测方法研究
中文摘要:

基于传统分散矩阵的特征选择方法易选出具有一定区分性但相互冗余的特征,这些冗余的特征制约了高光谱影像分类正确率的提高,针对此问题,该文对传统方法进行了改进,首先计算每2个类别的基于分散矩阵的可分性值,然后将它们的平均值作为特征选择准则,最后利用序列浮点向前搜索算法选出特定数量的特征,用于后续分类。将所选特征的均方相关系数作为冗余性度量,定量化衡量了所提出方法克服选择冗余特征的能力。利用一景常用的AVIRIS高光谱植被影像,从分类正确率的角度,比较了所提出方法与几种典型的基于互信息和基于可分性准则的特征选择方法,在高光谱影像植被分类中的性能。试验结果表明改进的特征选择方法能较好的避免选择相互冗余的特征,与基于互信息的特征选择方法相比,基于分散矩阵可分性准则的特征选择方法在总体上能获得较高的分类正确率,特别是所提出的特征选择方法,在2个数据集上均获得了最高的总体分类精度87.2%和90.1%,从而阐明了所提出的方法在高光谱影像植被分类中的有效性。

英文摘要:

Due to the advances in hyperspectral sensor technology, hyperspectral images have gained a great attention in the precision agriculture. Compared to multispectral images, e.g., Landsat TM(thematic mapper) and MODIS(moderate-resolution imaging spectroradiometer) images, hyperspectral images have higher spectral resolution and provide more contiguous spectrum. Thus, hyperspectral images are expected to have good capability in quantifying vegetation biophysical and biochemical attributes which can reflect crop growth status and guide site-specific agricultural management. In practical applications, vegetation classification is usually required to be conducted first and then the vegetation of interest is discriminated from others. It is easy to distinguish vegetated areas from other surface types by setting the threshold of normalized difference vegetation index(NDVI). As to the discrimination of different vegetation types using hyperspectral image, it is a typical hyperspectral image classification problem. The scatter-matrix-based class separability measure is often favored and chosen as a selection criterion in feature selection due to its simplicity and robustness. The scatter-matrix-based class separability measure is constructed by using 2 of 3 scatter matrices which are within-class scatter matrix, between-class scatter matrix and total scatter matrix. Traditionally, these scatter matrices are calculated from the perspective of all classes. However, direct optimization of this measure tends to select a set of discriminative but mutually redundant features, which restricts the improvement of classification accuracy. In order to avoid selecting mutually redundant features as much as possible, this study proposes an improved scatter-matrix-based feature selection method, which tries to calculate scatter-matrix-based class separability values for each pair of classes and then takes the average of all the pairwise class separability values as the final selection criterion. Feature selection is performed

同期刊论文项目
同项目期刊论文
期刊信息
  • 《光谱学与光谱分析》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国光学学会
  • 主编:高松
  • 地址:北京海淀区魏公村学院南路76号
  • 邮编:100081
  • 邮箱:chngpxygpfx@vip.sina.com
  • 电话:010-62181070
  • 国际标准刊号:ISSN:1000-0593
  • 国内统一刊号:ISSN:11-2200/O4
  • 邮发代号:82-68
  • 获奖情况:
  • 1992年北京出版局编辑质量奖,1996年中国科协优秀科技期刊奖,1997-2000获中国科协择优支持基础性高科技学术期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国生物医学检索系统,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:40642