应用集中紧性原理以及极小化极大原理讨论了半线性椭圆方程特征值问题-△u-μu|x|^-2=|u|^2*(s)-2u|x|^-s+λf(x,u)的解的存在性,得到了当λ充分小的时候,该问题有一个非平凡弱解.
Use the concentration compactness principle and the minimax principle to study the solution of eigenvalue problem -△u-μu|x|^-2=|u|^2*(s)-2u|x|^-s+λf(x,u) the conclution that when λ is small enough, this problem has a nontrivial weak solution.