应用集中紧性引理及对称山路定理讨论一类半线性椭圆方程:-△pu=a|u|P-2u|x|-P+f(x,u),u∈W0^1(Ω).当f(x,u)满足一定条件时,方程存在无穷多解.
Consider a semilinear elliptic equation with Hardy critical exponent:-△pu=a|u|P-2u|x|-P+f(x,u),by concentration compactness lemma and symmetry mountain passtheorem, where u∈W0^1(Ω).Under some conditions on f(x,u) obtain the existence of multiple solutions.