利用一个无穷远处的集中紧性原理来解决带约束极大值问题M(b.RN):=sup{∫RNb(x)|u|qdx;u∈W1,p(RN),∫RN(|△u|P+|u|P)dx=1的可达性,其中b(x)满足适当的条件,得到P-拉普拉斯椭圆方程-△pu+|u|P-2u=b(x)|u|q-2u,u∈W1,p(RN),1<pN,P<q<P的最小能量解.
Using a concentration-compactness principle at infinity to solve a constrained maximization problem M(b,RN) :sup{∫RNb(x)|u|qdx;u∈W1,p(RN),∫RN(|△u|P+|u|P)dx=1},here b(:c) satisfies certain conditions. Then obtain the existence of a least energy solution of a p-Laplacian elliptic equation-△pu+|u|P-2u=b(x)|u|q-2u,u∈W1,p(RN),1〈pN,P〈q〈P