主要证明如下结论:如果(C,T,Δ)是三角范畴,则C是Abelian范畴的充分且必要条件是C中三角是由同构于如下形式的态射图构成:UV〔0 0 0 1〕WV〔0 0 1 0〕T(U)W〔1 0 0 0〕T(U)T(V).由此得到:如果C是一个Abelian范畴,T是C上的可逆加法自函子,则有且仅有一种方式使(C,T)构成三角范畴.另外,还通过Abelian范畴C上的Serre类,研究局部化范畴C[S^-1]是Abelian三角范畴的条件.
Show that if(C,T,Δ) is a triangulated category,then C is an Abelian category if and only if the collection of diagramsXuYvZwT(X)in C which are isomorphic to the diagrams of the form UV〔0 0 0 1〕WV〔0 0 1 0〕T(U)W〔1 0 0 0〕T(U)T(V) are triangulations.So if C is an Abelian category and T is an additive functor which is an automorphism of the category C.Then have only a way to make(C,T) a triangulated category.Moreover also inverstigate the conditions for the localization C to be an Abelian triangulated category. Moreover also inverstigate the conditions for the localization C[S^-1] to be an Abelian triangulated category via a Serre class on the Abelian category C.