位置:成果数据库 > 期刊 > 期刊详情页
一种应用于机器人导航的激光点云聚类算法
  • ISSN号:1002-0446
  • 期刊名称:《机器人》
  • 时间:0
  • 分类:TP242.6[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]南京理工大学计算机科学与技术学院,江苏南京210094
  • 相关基金:国家自然科学基金重大研究计划重点资助项目(90820306)
中文摘要:

提出一种适用于机器人导航和环境理解的聚类算法,该算法用来处理各向异性分布的点云数据.算法的基本思想是基于点云的密度分布变化和空间位置分布的不同进行聚类,将信息聚类思想融入传统的DBSCAN算法,既保留了DBSCAN算法抗噪声能力强的优点,又结合点云的空间概率分布改善了聚类结果.算法采用自适应的实时参数估计方法克服全局参数的缺点.在真实环境数据集上的实验证明,所提出的算法可以将点云密度相似但是空间分布不同且互相连接的对象分割开,能处理高噪声点云数据.

英文摘要:

A clustering algorithm for robot navigation and environment understanding is proposed.It is designed to deal with anisotropic distribution point cloud.This algorithm performs clustering according to the variation of density and spatial distribution of points.It combines concepts of information clustering with traditional DBSCAN algorithm.On one hand it keeps antinoise ability,and on the other hand it improves the clustering result by incorporating spatial probability distribution of point cloud.The algorithm uses an adaptive online parameter computing method to conquer the disadvantage of constant global parameter.Experiments on real data set validate that the proposed algorithm can separate connected objects where point cloud has similar density but different spacial distribution,and it can deal with point clouds with high noise.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《机器人》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院沈阳自动化研究所
  • 主编:王越超
  • 地址:沈阳市南塔街114号
  • 邮编:110016
  • 邮箱:jqr@sia.ac.cn
  • 电话:024-23970050
  • 国际标准刊号:ISSN:1002-0446
  • 国内统一刊号:ISSN:21-1137/TP
  • 邮发代号:
  • 获奖情况:
  • 中文核心期刊(2000年)
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11997