设G是一个群,〈A,B〉是乘子Hopf代数对,其中B为正则的G-余分次乘子Hopf代数.设π是群G在B上的交叉作用,D^π=A^cop∝B=+p∈GDπ^p,Dπ^p=A^cop∝Bp,是关于乘子Hopf代数对〈A,B〉的Drinfeld偶,则Drinfeld偶D^π的变形D^π也是乘子Hopf代数.B×A可以看作是M(D^π×D^π)的子代数,B×A中的元素b×a在M(D^π×D^π)中的像是(1∝b)×(a∝1).设W =∑αWα∈ M(B×A)是一个关于乘子Hopf代数对〈A,B〉的π-典范乘子,其中对任意的α∈G,Wα∈M(Bα×A),则W在M(D^π×D^π)中的像是D^π上的一个π-拟三角结构.
Let G be a group and (A, B) be a pair of multiplier Hopf algebras, where B is regular G-cograded. Let π be a crossing action of G on B, D^π=A^cop∝B=+p∈GDπ^p with Dπ^p=A^cop∝Bp, is the Drinfeld double of the pair (A, B), and then the deformation D^π becomes a multiplier Hopf algebra. B×A can be considered as a subalgebra of M(D^π×D^π), the image of element b×a in B×A is (1∝b)×(a∝1) in M(D^π×D^π). Let W =∑αWα∈ M(B×A) be a π-canonical multiplier for the pair (A, B) with Wα∈M(Bα×A) for all α∈G. The image of W in M(D^π×D^π)is a π-quasitriangular structure over D^π.