位置:成果数据库 > 期刊 > 期刊详情页
基于属性约简和SVM参数优化的入侵检测方法
  • ISSN号:1000-386X
  • 期刊名称:《计算机应用与软件》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江南大学无锡职业技术学院,江苏无锡214122, [2]江南大学物联网工程学院,江苏无锡214122
  • 相关基金:国家自然科学基金(60975027)
中文摘要:

支持向量机(SVM)对于小样本、非线性、高维等分类问题,具有较强的适用性。但是SVM存在训练时间长,样本集占用存储空间过大等问题。提出一种基于属性约简和参数优化的SVM的入侵检测方法。利用粗糙集理论对样本集进行特征约简并使用改进的网格搜索算法对SVM参数进行优化,删除对入侵检测无影响的属性,从而解决SVM训练时间长以及存储空间大的问题。KDD99数据集下的实验表明,该方法是有效的入侵检测方式,不仅加快训练速度,还提高入侵检测的准确率。

英文摘要:

SVM is strongly applicable to small sampled,nonlinear or high dimensional classification issues.But there are also disadvantages with SVM such as long training period,too much storage occupation by sample sets and so on.The thesis proposes an attribute reduction and parameter optimization based SVM intrusion detection method,which uses the rough set theory to execute feature reduction on sample sets and uses the improved network search algorithm to optimize SVM parameters,so that removes those properties that don't have impact on intrusion detection.Hence the disadvantages like long training period and large storage requirement are overcome.Experiment using KDD99 data set shows that the new method is an effective intrusion detection method.It not only accelerates the training speed,but also improves the accuracy of intrusion detection.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用与软件》
  • 北大核心期刊(2011版)
  • 主管单位:上海科学院
  • 主办单位:上海市计算技术研究所 上海计算机软件技术开发中心
  • 主编:朱三元
  • 地址:上海市愚园路546号
  • 邮编:200040
  • 邮箱:cas@sict.stc.sh.cn
  • 电话:021-62254715 62520070-505
  • 国际标准刊号:ISSN:1000-386X
  • 国内统一刊号:ISSN:31-1260/TP
  • 邮发代号:4-379
  • 获奖情况:
  • 全国计算机类中文核心期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2011版),中国北大核心期刊(2000版)
  • 被引量:27463